Supervised Learning Methods

Computational Text Analysis

Theresa Gessler University of Zurich | http://theresagessler.eu/ | @th_ges 2022-05-09

Theresa Gessler, Supervised Learning

Program

• machine learning / supervised methods

• general idea

• Machine Learning in Quanteda / work flow

- splitting your data
- classifier implementation in quanteda and caret
- evaluation of classifiers

• substantive uses of machine learning

- feature scores
- prediction accuracy

getting better

- text data
- other algorithms
- cross-validation and sampling
- more evaluation metrics

- a new answer to the (old) classification problem
 - e.g. How do we know if a text is positive or negative?
 - e.g. How do we know which topic a text speaks about?

- particularly attractive when you already have 'labelled data'
 - e.g. a set of speeches where we know the topic
 - $\circ~$ e.g. when we use data coded by other researchers

overcoming difficulty of defining words \leftrightarrow decision-making as (somewhat) a black box

...still, the results are based on human coding decisions and share our biases!

General idea

Tom Mitchell, Machine Learning, 1997

"A computer program is said to learn from **experience E** with respect to some class of **tasks T** and **performance measure P** if its performance at tasks in T, as measured by P, improves with experience E"

- \rightarrow Classification as task~T
- \rightarrow pre-classified texts as **experience E**
- \rightarrow correctly predicted new texts base for **Performance measures P**

Assumption: relation in data we know \rightarrow relation in unknown data

General idea

- we learn which text features predict categories of interest
- most classifier work similar to regressions: How much does a feature predict outcome
 - **regressions**: do resources predict conflict?
 - **dictionary**: does the word 'army' predict conflict?
 - **classifier**: does the word 'army' predict conflict? does the word 'is' predict conflict? does the word...?

Generalisation and Overfitting

- 1. **Generalisation**: A classifier learns to correctly predict output from given inputs not only in previously seen samples but **also in previously unseen samples**
- 2. **Overfitting**: A classifier learns to correctly predict output from given inputs in previously seen samples but **fails to do so in previously unseen samples**. This causes poor prediction/generalisation.
- \rightarrow **overfitting**: predicting too close to existing data
 - We train classifiers on existing data
 - trained to maximize in-sample performance
 - BUT: applications typically on new data
- \rightarrow we counter this with a specific work flow

Workflow

- (hand-coded) data (gold standard), to be split into two parts:
 - training set from which we learn
 - test set on which we validate our classifier
- method to learn from hand-coded data: classification algorithm
 - how do we translate features into categories?
 - e.g. Naive Bayes, regularized regression, SVM, k-nearest neighbours
 - potentially combined with **cross-validation**
- method to evaluate classifier
 - performance metrics: confusion matrix, accuracy, precision, recall, F1 scores

Packages

- useful for getting started: quanteda (and quanteda.textmodels)
 - implementation of a few standard classification models (naiveBayes, SVM, regularized regression)
 - works directly on dfm
 - incredibly fast for text data
- package for machine learning: caret (classification and regression training)
 - more complex but suited for a variety of uses
 - unifies the usage of machine learning algorithms from different R packages
 - currently 238 different classification models
 - tools for evaluation

However, caret is not focused on text data \rightarrow useful for other ML applications but only takes data.frame version of dfm

Data

Movie review dataset

A corpus object containing 2,000 movie reviews classified by positive or negative sentiment.

Splitting

- splitting data into training and test set
 - build classifier on training set
 - evaluate classifier on test set
- in quanteda: corpus_sample() Or dfm_sample()

```
reviews_train ← dfm_sample(reviews_dfm,0.8*ndoc(reviews_corp))
reviews_test ← dfm_subset(reviews_dfm,
    !(docnames(reviews_dfm) %in% docnames(reviews_train)))
```

Data: Separating test and training sample

head(reviews_train,3)

##	Document-feature	matri	<pre> of:</pre>	: 3 do	cuments	, 48	3 , 3	39 1	features	s (99 . 1	L1% sparse)	and 3 docvars.	
##		featu	res										
##	docs	plot	two	teen	couples	go	to	а	church	party	drink		
##	cv675_22871.txt	0	0	0	Θ	0	14	26	Θ	Θ	Θ		
##	cv663_13019.txt	Θ	0	0	0	0	23	33	Θ	Θ	Θ		
##	cv303_27520.txt	Θ	0	0	Θ	0	15	29	Θ	1	Θ		
##	[reached max_nfe	at	48,	,329 m	ore feat	cure	es]					
he	ead(reviews_test,3)											
									-				
##	Document-feature	matrix	c of:	: 3 do	cuments,	, 48	3,3:	39 t	features	5 (99.4	40% sparse)	and 3 docvars.	
##		featu	res										
##	docs	plot	two	teen	couples	go	to	а	church	party	drink		
##	cv002_17424.txt	2	1	0	0	2	6	10	Θ	Θ	Θ		
##	cv007_4992.txt	1	Θ	0	Θ	0	8	23	Θ	Θ	Θ		
##	cv012_29411.txt	Θ	0	0	Θ	0	13	9	Θ	Θ	Θ		
##	[reached max_nfe	at	48,	.329 m	nore feat	cure	€S]					

Data: Adjusting training and test sample

Training and test sample have to be fully separated

- only use features contained in training set by trimming dfm_train (dfm_trim())
- dfm_match() both **pads missing features** and **removes features** not contained in training data.

```
reviews_train ← reviews_train %>% dfm_trim(1)
reviews_test ← dfm_match(reviews_test, featnames(reviews_train))
head(reviews_test,3)
```

Document-feature matrix of: 3 documents, 43,681 features (99.37% sparse) and 3
docvars.

##		res									
##	docs	plot	two	teen	couples	go	to	а	church	party	drink
##	cv002_17424.t	xt 2	1	0	Θ	2	6	10	Θ	Θ	Θ
##	cv007_4992.t>	kt 1	Θ	0	Θ	0	8	23	Θ	Θ	Θ
##	cv012_29411.t	xt 0	0	0	0	0	13	9	Θ	Θ	Θ
##	[reached max_r	nfeat	43,	671 n	nore feat	cure	es _]			
					There	esa (Gess	ler, S	Supervise	d Learni	ng

Classification Algorithm: Naive Bayes (NB)

• Bayes Theorem: probability of event based on conditions

Intuition: If we observe the term "fantastic" in a text, how likely is this text a positive review?

- 1. Determine frequency of term in positive and negative reviews (prior).
- 2. Assess probability of features given a particular class.
- 3. Get probability of a document belonging to each class (posterior).
- 4. Which posterior is highest?

Classification Algorithm: Naive Bayes (NB)

Advantages

- Simple, fast, effective
- Relatively small training set required for good results (with reasonably balanced classes)
- Easy to obtain probabilities

Disadvantages

- Strong assumption of conditional independence ('naive') is problematic
- If feature is not in training set, it is disregarded for the classification ('irrelevant words')

Classification Algorithm: Training the model

fast implementation in textmodel_nb()

```
nb_model ← textmodel_nb(reviews_train, docvars(reviews_train,
    "sentiment"))
nb model
```

##

```
## Call:
## textmodel_nb.dfm(x = reviews_train, y = docvars(reviews_train,
## "sentiment"))
##
## Distribution: multinomial ; priors: 0.5 0.5 ; smoothing value: 1 ; 1600 training
documents: fitted features.
```

Should be done within seconds:

```
## Time difference of 0.5411482 secs
```

Classification Algorithm: Predicting test data

• prediction of new data with predict(), model and new dfm

```
test_predictions←predict(nb_model,
    newdata=reviews_test)
head(test predictions,5)
```

cv002_17424.txt cv007_4992.txt cv012_29411.txt cv013_10494.txt cv016_4348.txt
neg neg neg neg neg neg
Levels: neg pos

\rightarrow How well did we do?

table(docvars(reviews_test,"sentiment"),test_predictions)

test_predictions
neg pos
neg 167 34
pos 32 167

Evaluation

Evaluation

Evaluation

Evaluation

Accuracy

- Accuracy: How many cases did we classify correctly?
 - How many reviews did we correctly evaluate?

 $\frac{Correctly\,classified}{Total\,number\,of\,cases} = \frac{true\,positives + true\,negatives}{Total\,number\,of\,cases}$ Theresa Gessler, Supervised Learning

When we classify texts into outcomes we already know, classification results tell us

- the distribution of features across groups (Beltran et. al. 2020)
- our ability to accurately predict groups (Peterson & Spirling 2018)

 \rightarrow We can use text classification for answering substantive questions

Feature scores

- many classifiers provide us with a score for each feature that quantifies how predictive a feature is of the outcome
 - e.g. how predictive a word is of author gender
 - which words are most predictive of progressive / conservative ideology
- this is based on the **differential use of this feature** across outcomes
 - sometimes combined with its **frequency**
- **application**: prediction with a classifier that contains feature weights, extracting those weights for best-fitted model
- Beltran, Javier, Aina Gallego, Alba Huidobro, Enrique Romero, and Lluís Padró. "Male and Female Politicians on Twitter: A Machine Learning Approach." European Journal of Political Research.

However, we might equally use a different metric - e.g. Keyness - to identify features

Prediction Accuracy

- classification accuracy also "provides an informative instrument for the degree of aggregate polarization" (120)
 - easily distinguishable parties are polarized, parties that speak similarly are not
- application: training per legislature, evaluation on held-out test set → accuracy (correctly predicted classes) as measure of polarization
- limitation: works best when parties use different words to discuss the same issue not raise different subjects → best for debates constrained by an agenda
 - $\circ \leftrightarrow$ issue competition
- Peterson, Andrew, and Arthur Spirling (2018). "Classification Accuracy as a Substantive Quantity of Interest: Measuring Polarization in Westminster Systems." Political Analysis 26, no. 1: 120–28. https://doi.org/10.1017/pan.2017.39.
 - also: *intra-party polarization*, Goet, Niels D (2019). "The Politics of Procedural Choice: Regulating Legislative Debate in the UK House of Commons, 1811–2015." British Journal of Political Science

Practicing Predictions

- 04_classifyingparliament.rmd
 - classification accuracy in the British parliament
- At home: 04_thesisabstracts.rmd
 - which features are most telling for each EUI department

Machine learning and text analysis

- machine learning is widely used for non-text problems
 - we use the same machine learning algorithms for text as for other data
- however, with text data **dimensionality** is a challenge
 - **number of features** is very high
 - **sparsity**: most features are very rare
 - we usually do not have **enough texts** to learn from

We optimize with several goals

- \rightarrow improve speed & computational costs
- → **improve performance** (in unseen data)
- \rightarrow improve interpretability

Feature Engineering

reducing the number of features

- stemming and lemmatization can unify similar features
- dimensionality reduction techniques (e.g. principal component analysis)
- $\circ \rightarrow$ **gain**: speed, computational costs

• selecting meaningful features

- very infrequent features are unlikely to help with classification
- overly frequent features are equally unlikely to help with classification
- stopword removal
- feature weighting
- $\circ \rightarrow$ **gain**: (speed, computational costs and) accuracy

Feature Engineering

```
reviews_train_small ← dfm_trim(reviews_train,5)
```

• training model with 43681 respectively 13388 features

```
start ← Sys.time()
nb_model←textmodel_nb(reviews_train,docvars(reviews_train,
    "sentiment"))
end ← Sys.time()
start5 ← Sys.time()
nb_model←textmodel_nb(reviews_train_small,docvars(reviews_train,
    "sentiment"))
end5 ← Sys.time()
## [1] "Model with 43681 features: 0.0340080261230469"
```

```
## [1] "Model with 13388 features: 0.03000807762146"
```

Model building

• obtaining more data

- new data generation methods like crowd-coding
- $\circ \rightarrow$ **gain**: accuracy

• trying different models and specification

- e.g. from caret
- $\circ \rightarrow$ **gain**: accuracy, potentially speed for repeated runs

• cross-validation / sampling

- preventing over-fitting
- $\circ \rightarrow$ **gain**: accuracy (on new data)

• optimizing depending on task

• different evaluation standards for different tasks

Support vector machine (SVM)

- combines all data points
 - draw hyperplanes into multidimensional space to separate classes
 - no independence assumptions
- while NB is generative, SVM is **discriminative**
 - what is most likely classification, given text
- works better for large datasets (compared to NB)

```
svm_model ← textmodel_svm(reviews_train, docvars(reviews_train, "sentiment"))
svm_model
```

##

```
## Call:
## textmodel_svm.dfm(x = reviews_train, y = docvars(reviews_train,
## "sentiment"))
##
## 1,600 training documents; 43,682 fitted features.
## Method: L2-regularized L2-loss support vector classification dual
(L2R_L2LOSS_SVC_DUAL)
```

Theresa Gessler, Supervised Learning

Support vector machine (SVM)

May take minimally longer than NB:

Time difference of 7.264851 secs

Regularized Regression

- outcome regressed on text features
- implementation in caret: LASSO (Least Absolute Shrinkage and Selection Operator)
 - penalty that biases estimates towards zero
 - in effect, LASSO performs feature / variable selection
- intuitive understanding of feature scores as regression results
 - focus on important features

Online Tutorial - including penalty estimation

 \rightarrow this model, like many other models, requires caret or other external packages

Getting better: Sampling

Getting better: Sampling

Cross-Validation

- Create K training and test sets ("folds") within training set
- For each k in K, run classifier and estimate performance in test set within fold

Iteration 1	Test	Train	Train	Train	Train
Iteration 2	Train	Test	Train	Train	Train
Iteration 3	Train	Train	Test	Train	Train
Iteration 4	Train	Train	Train	Test	Train
Iteration 5	Train	Train	Train	Train	Test

Getting better: Sampling

Cross-Validation and general advice

- **cross-validation**: implementation so far only in quanteda.classifiers (crossval), caret (documentation) or by hand
 - caret also has other sampling strategies like upsampling and downsampling
- Important: model complexity
 - decreases error on training set: adaptation to specifics of data set
 - likely increases error in test set

\rightarrow simple models are often preferable, also for interpretability

- whether you choose to do a simple train-test split or use k-fold cross-validation: **final** evaluation should be done on test-sample!
- Splitting our data is like pre-registering a survey:
 - you can try whatever you want during pre-testing (on the training set)
 - once you decide on a model, you are 'stuck' when going to test set

The confusion matrix

• more detailed evaluation with confusionMatrix() function from caret

```
confusionMatrix(as.factor(docvars(reviews_test,"sentiment")), test_predictions)
```

```
## Confusion Matrix and Statistics
###
###
              Reference
  Prediction neg pos
###
          neg 167 34
###
###
           pos 32 167
###
###
                   Accuracy : 0.835
                     95% CI : (0.7949, 0.87)
###
       No Information Rate : 0.5025
###
       P-Value [Acc > NIR] : <2e-16
###
###
###
                       Kappa : 0.67
###
    Mcnemar's Test P-Value : 0.902
###
###
###
                Sensitivity : 0.8392
                Specificity : 0.8308
###
###
             Pos Pred Value : 0.8308
###
             Neg Pred Value : 0.8392
                 Prevalence : 0.4975
###
             Detection Rate : 0.4175
###
###
      Detection Prevalence : 0.5025
         Balanced Accuracy : 0.8350
###
###
```

Theresa Gessler, Supervised Learning

Accuracy

Accuracy

- Accuracy: How many cases did we classify correctly?
 - How many reviews did we correctly evaluate?

 $\frac{Correctly\,classified}{Total\,number\,of\,cases} = \frac{true\,positives + true\,negatives}{Total\,number\,of\,cases}$ Theresa Gessler, Supervised Learning

What's wrong with accuracy?

- imagine, we are interested in a very rare outcome here: B
 - rare classes are often under-predicted
 - consider these fabricated predictions to see the effect

```
true ← factor(c("B","B","B","B","B","ep("A",35)))
pred ← factor(c("B",rep("A",39)))
caret::confusionMatrix(pred,true,"B")$table
```

##	F	Refe	ren	СЄ
##	Prediction	А	В	
##	А	35	4	
##	В	0	1	

caret::confusionMatrix(pred,true,"B")\$overall['Accuracy']

Accuracy ## 0.9

→ Overall accuracy is a bad measure when classes are imbalanced

Accuracy, Sensitivity, Specificity

- Accuracy = (TP+TN)/(TP+TN+FP+FN)
 - sensitivity: true positive rate
 - specificity: true negative rate

Precision, Recall, F1 scores

- recall: TP / (TP+FN)
- precision: TP / (TP+FP)
- F1 score: harmonic mean of precision and recall (=sensitivity)
- typically calculated by Class

Theresa Gessler, Supervised Learning

What's wrong with accuracy?

```
true ← factor(c("B","B","B","B","B",rep("A",35)))
pred ← factor(c("B",rep("A",39)))
caret::confusionMatrix(pred,true,positive="B")$byClass
```

##	Sensitivi	ty	Specificity	Pos Pred Value
##	0.20000	00	1.0000000	1.000000
##	Neg Pred Val	ue	Precision	Recall
##	0.89743	59	1.0000000	0.200000
##		F1	Prevalence	Detection Rate
##	0.33333	33	0.1250000	0.0250000
##	Detection Prevalen	се	Balanced Accuracy	
##	0.02500	00	0.600000	

Tip: specify the positve class

 \rightarrow Our fake-predictions have a low Recall, low Sensitivity, bad F1 score

Which metric matters?

Depending on the task, we optimize precision, recall or other metrics:

- interested in multiple categories \rightarrow F1 score, accuracy
 - e.g. multiple newspaper topics, disease detection for chronic diseases
- finding the needle in the hay stack \rightarrow recall
 - e.g. hate speech to be checked by human evaluators, disease detection for Covid-19
- finding only what we need \rightarrow precision
 - e.g. content to be banned
- Generally: Measuring performance is a whole science in itself

After the break

After the break

Unsupervised classification

- Unsupervised methods scale documents based on patterns of similarity from the document-feature matrix, without requiring a training step
- Examples
 - Wordfish
 - topic models
- **Relative advantage**: You do not have to know the dimension being scaled (also a disadvantage!)

After the break

Homework

- complete & hand in:
 - 03_classification.rmd
 - 03_classifyingparliament.rmd
 - EUI Thesis abstracts: 03_thesisabstracts.rmd
- if you want, try a different parliament

Thank you! - Questions?