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Program

e Workflow
o Text analysis Objects
 Descriptive Analysis
o at corpus level: keywords in context, readability
o at dfm level: keyness statistics
o Dictionary analysis
o conceptually
o in quanteda
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Workflow
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Workflow

The aim of this course is to introduce
students to the quantitative analysis of
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Workflow

Three types of objects in quanteda:

e corpus
o texts as strings with metadata in data frame

o tokens
o separated individual features in list of vectors
o more efficient but maintains the word order

« document-feature matrix (dfm)
o Frequency of features per document in matrix / table format
o most efficient structure, but no information about positions of the words ('bag of
words')
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Example: US Presidential Debate

e 1st presidential debate bw/ Donald Trump & Joe Biden, moderated by Chris Wallace
e debate transcript with speakers and time stamps

2020PRESIDENTIAL

CASE WESTERN RESERVE UNIVERSITY
AND CLEVELAND CLINIC

Transcript obtained from Kaggle: https://www.kRaggle.com/headsortails/us-election-2020-
presidential-debates Theresa Gessler, Descriptive Text Analysis 6/ 61



https://www.kaggle.com/headsortails/us-election-2020-presidential-debates

Corpus
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Workflow

Corpus

In R (03_descriptive_analysis.rmd)

 loading 'us_election_2020_1st_presidential_debate.csv'

e inspecting the dataset: content, structure, variables
o bonus: wrangle: generate a shorter speaker variable

e creating the corpus: use corpus() to create a quanteda COrpus
o bonus: specify useful names for each text in the corpus

first_debate ¢« read.csv("../data/us_election_ 2020 _1st presidential_debate.csv",
stringsAsFactors = F,encoding="UTF-8")

first _debate ¢« first debate %>% mutate(speaker=str_extract(speaker,"[A-z]*$"))

debate_corp ¢« corpus(first_debate)

docnames(debate _corp) ¢« paste@(l:nrow(first debate)," ",

first_debate$speaker)
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Workflow

Corpus

e corpus: Structured collection of texts
o Documents: Texts (by default: text variable - specify with text_field=)
o Document variables / docvars: variables obtained from data set

debate_corp[1:4]

Corpus consisting of 4 documents and 2 docvars.
1 wWallace :
"Good evening from the Health Education Campus of Case Wester ...

2 Wallace :
"This debate 1s being conducted under health and safety proto...

3 Biden :
"How you doing, man?"

4 _Trump :
"How are you doing?"

THEFEEHEERERRE
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Workflow

Summary of the corpus

summary(debate_corp) %>% head()

H Text Types Tokens Sentences speaker minute
#H 1 1 _Wallace 88 135 8 Wallace 01:20
#H 2 2 _Wallace 83 116 5 Wallace 02:10
H 3 3 _Biden 1 Biden 02:49
H 4 4_Trump 5 5 1 Trump 02:51
#H 5 5 Biden 3 3 1 Biden 02:51
#H 6 6 _Wallace 89 149 9 Wallace 03:11

Important terms

e Text: each document of the corpus
« Tokens: total number of words in a text (or corpus), independent of repetitions
o Types: Number of different words in a text (or corpus)
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Tokens
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Workflow

Tokens

« individual features, stored in list of vectors
e more efficient format than corpus but retains the word order
o 'chop'the sentences without 'shaking' the bag

Use

« some of the analysis on corpus (e.g. Keywords in Context)
e pre-processing (also at dfm-level)
o removing irrelevant features, manipulation of features
o advantage of tokens: word order provides context
o Dictionaries (also at dfm-level)
o advantage of tokens: multi-word expressions, word order as context

— What constitutes a feature (word, n-gram, sentence, letter)?

— Which of these features are relevant? How do | prepare them?

Theresa Gessler, Descriptive Text Analysis
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Workflow

Tokenization

« separation into features is called tokenization (command: tokens() )
e possible at different levels: word, sentence or character.

tokens(debate_corp, what="word")[[1]][1:10]

[1] "Good" "evening" “from" “the" "Health" "Education”

HHt
## [7] "Campus"” "of" "Case" "Western"

tokens(debate_corp, what="character")[[1]][1:10]

# [1] IIGII IIOII IIOII Ildll Ilell IIVII Ilell Ilnll Ilill Ilnll

Default: word-level tokenization

debate_toks ¢« tokens(debate corp)

— We return to tokens later for pre-processing and dictionaries
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Document feature matrix
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Workflow

Document feature matrix

 frequency of features per document in matrix format

o created from corpus or tokens
e most efficient structure, but no information on word positions — 'bag of words'
e origin for most statistical analyses

o combination of word frequency with document variables

debate_dfm ¢« dfm(debate_ toks)
debate_dfm

## Document-feature matrix of: 789 documents, 2,297 features (99.16% sparse) and 2

docvars.

Ht features

#H docs good evening from the health education campus of case western
Ht 1 _Wwallace 1 1 2 15 1 1 1 5 1 1
Ht 2 Wallace 0 0 0 10 2 0 0 1 0 0
Ht 3_Biden 0 0 0 0 0 0 0 0 0 0
Ht 4 Trump 0 0 0 0 0 0 0 0 0 0
Ht 5_Biden 0 0 0 0 0 0 0 0 0 0
H 6 Wallace 0 0 0 0
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Descriptive Analysis
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Descriptive Analysis

you can follow along in R: 03_descriptive_analysis.rmd

Where are terms used?

e.g. when do interruptions happen?

kwic(debate_corp, "crosstalk") %>% head(15) %>%
textplot_xray()

Lexical dispersion plot

crossialk

| 59_Wallace
115_Trump

| 134 Biden

222 Trump

| 270 _Biden

281_Trump

IT_Trump

328_Biden

| 338 Trump
| 363_Trump

| 383 Hiden
| 391_Trump

354 _Trump
| 406 Wallace
| . 415 Wallace

Document

Helat'r:.e:.;uken index
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Descriptive Analysis

In which context are terms used?

Keywords in context, e.g. 'country’

kwic(debate_corp, "country",window=4) %>%
head()

#Ht Keyword-in-context with 6 matches.

H [167 _Trump, 9] to you, the | country | would have been left
## [167_Trump, 150] should have closed our | country | . Wait a minute

H [169_Trump, 9] should have closed our | country | because you thought it
H [215 Trump, 36] the history of our | country | . And by the

H [226_Trump, 9] to shut down this | country | and I want to

H [228 Trump, 29] to shut down the | country | . We just went

at tokens-level: after removing stopwords
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Descriptive Analysis

How are the texts written?

e e.g readability statistics at text level
textstat_readability(debate_corp) %>% head(3)

H document Flesch
# 1 1 wallace 62.15573
#H 2 2 _Wallace 50.10547
H 3 3 _Biden 97.02500

Paper: Schoonvelde et.al. (2019) “Liberals Lecture, Conservatives Communicate: Analyzing
Complexity and Ideology in 381,609 Political Speeches.” PLOS ONE 14, no. 2

Paper: Spirling (2015). “Democratization and Linguistic Complexity: The Effect of Franchise
Extension on Parliamentary Discourse, 18321915 The Journal of Politics 78 (1): 120-36.

e e.g frequent word combinations: textstat_collocations()
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Descriptive Analysis

Which words are characteristic for each speaker?

 at the dfm-level: centered on frequency of features
o keyness of each term for speaker: textstat_keyness() with chi”2 or other measures

dfm_group(debate_dfm,speaker) %>% textstat _keyness("Biden") %>% textplot_keyness()

Y
m "IQ reference
ge rtlﬁ,‘ﬁ

Il Biden
::|u HI!'FIJ'{
presi:%ri'rt lﬁ' faj

chi2

o other dfm-level statistics: textstat_lexdiv() (lexical diversity)
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Descriptive Analysis

For next session: Practice & analysis

Complete 03_descriptive_analysis.rmd

e readability comparison
e Keywords in context
e keyness statistics
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Dictionaries
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Dictionaries

Acquire Documents 3 Preprocess s——— Research Objective
e
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Fig. 1 An overview of text as data methods.

Grimmer, J. and B. M. Stewart (2013). Text as data: The promise and pitfalls of automatic
content analysis methods for political texts. Political Analysis 21, 267-297.
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Dictionaries

Purpose

e sorting text into categories
o e.g.:immigration-related texts
e measuring degrees of certain characteristics
o e.g. sentiment of amazon reviews
e finding the texts we care about
o e.g. finding news articles about protests so that we can read them
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Dictionaries

Degree of human involvement

e Human coding (100% human involvement)

o maybe something you did as a student?
 Supervised (1-99% human involvement)

o sorting data into known categories
e Unsupervised (0% human involvement)

o automated sorting of data into unknown categories

We dicuss two methods of supervised classification

e with a dictionary
o with machine learning (tomorrow)
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Dictionaries

A dictionary

A list of...

e 'keys' that stand for specific meanings or concepts
o derived from theoretical considerations
e 'values' as empirical indicators of these keys

e.g. family members (key): mother, father, brother, sister, aunt, uncle, boyfriend, girlfriend, ...
(values)

Measurement

e measurement of concept by frequency count of dictionary features
e more complex counts possible

o and / or matches

o continuous or binary measures of mentions

Theresa Gessler, Descriptive Text Analysis 26 | 61



Dictionaries

Advantages Disadvantages
e easy to apply e rather supervised technique (human
e easy to adjust involvement)
e cost-efficient e dependence on single words
o« perfectly reliable (compared to human o esp. for small data: big effects
coding) o negations, dependency structures
etc.

e applying dictionaries is difficult
o context dependency
o evolution of language
e creating dictionaries is difficult
o theoretical considerations
o exhaustiveness (see King, Lam and
Roberts 2017)

— A good dictionary is exhaustive but its values are also unambiguous (and possibly time-

Insensitive, context-relevant, ) Theresa Gessler, Descriptive Text Analysis 27 | 61
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Dictionaries

Existing dictionaries

Due to the long tradition of dictionary-research, many exist ready for use - for example...

. 3 THE L.L" ERAL INQUIRER
General Inquirer: “SOME STRONG FEELINGS CO
BUY ME JUST A GUITAR 1 AK

. AT SHE AND A GIRLA COMPUTER
o 182 CategOrleS _f,,1“|n,|1,|_|_']I GO TO THE APPROACH
. . ) : POOL I CANNOT SWIR 70
o e.g. "self-references," "negatives HEM_IF YOU FALL IN. CONTENT
i DFG;H]E CONSIDER ANALYSIS

. . . N NOTHIMNG THAT IS5 CLD TH

NRC Emotion Lexicon (english) £ THE B07S MDD e T
. . . SAID. TAKE OFFA PSYCHOLDGY |
o eight basic emotions CE. YOU KNOWs HE SOCIOLOGY|
THOUGHT THAT HE ANTHROPOLOGY

: e - ) S YOUR FACE NOW MMM TO AND
Linguistic Inquiry and Word Count: 1785 THINK/S YOU/L POLITICAL
) . | THINK HE WILL FINAL SCIENCE

o 82 [anguage d|men5|ons, MOT WAIT UNTIL HE WOULDGET
IT PLAY. AND PHILIPJ.STOME

o AND 1 HWILL DEXTERC. DUNPHY

o 4500 words and stems JAS IT MADE MARSHALLS. SMITH
HE PROBABLY DANIEL M. DGILVIE

e Newsmap ELSE. HE MUST HAVE LEARN
IE CAM MAKE MONEY BY LEARNI

o geographic locations
e and many others

First edition of the General Inquirer, 1966
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https://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
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https://koheiw.net/?tag=dictionary

Dictionaries

ldeologies - Pauwels (2011)

Measuring Populism: A Quantitative Text Analysis of Party Literature in Belgium. Journal of
Elections, Public Opinion and Parties 21(1): 97-119.

Table A2. Dictionary

Dictionary Dutch words Translation

Conservatism christ*; geloof; gezin; kerk; christ®; belief; family; church;
normen; porn*; seks*; waarden norm; porn*; sex*; values

Environment ecol*; groene*; klimaat®; milieu®;  ecol*; green®; climate*;
opwarming environment®; heating

Immigration marok®; turk; allocht*; asiel*; moroc*; turk; allocht®; asylum*;
halal*; hoofddoek*; illega*; halal*; scarf¥; illega*; immigr¥;
immigr*; islam*; koran; moslim*; islam*; koran; muslim*; foreign*
vreemd*

— uses frequency of word use to measure if text expresses ideology
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Dictionaries

Recommendation Language - Schmader et al. (2007)

A Linguistic Comparison of Letters of Recommendation for Male and Female Chemistry and
Biochemistry Job Applicants. Sex roles 57(7-8): 509-514.

Study-Defined Dimension Dictionaries Standout words: excellen®, superb, outstanding, unique,
exceptional, unparalleled, *est, most, wonderful, terrific*, fabulous, magnificent, remarkable,

estraordinar®, amazing, supreme®, unmatched
E ] k]

Ability words: talent®, intell*, smart*, skill*, ability, genius, brilliant*, bright*, brain*, aptitude, gift*,
capacity, propensity, innate, flair, knack, clever*, expert*, proficient*, capable, adept®, able, competent,
natural®, inherent*, instinct*, adroit*, creative*, insight*, analytical

Grindstone words: hardworking, conscientious, depend®, meticulous, thorough, diligen*, dedicate, careful,
reliab*, effort®, assiduous, trust*, responsib*, methodical, industrious, busy, work*, persist*, organiz*,

disciplined

Teaching words: teach, instruct, educat®, train*, mentor, supervis*, adviser, counselor, syllabus, syllabus,
course*, class, service, colleague, citizen, communicate®, lectur®, student®, present®, rapport

Research words: research®, data, study, studies, experiment®, scholarship, test*, result®, finding*,
publication®, publish*, vita*, method*, scien*, grant®, fund*, manuscript®, project®, journal*, theor™,
discover*, contribution*®

Note. * indicates that any word containing the letter string that precedes or follows the asterisk should be

counted. Theresa Gessler, Descriptive Text Analysis 30 / 61
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Applying and creating dictionaries

Integredient 1: Text

— Examples on the Presidential Debate Corpus

e geographic: Which regions of the world are mentioned in the debate?
o description

e thematic: how well can we predict the topic of a statement?
o prediction

Follow along in R using 03_dictionaries.rmd
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Applying and creating dictionaries

Ingredient 2: Dictionary

newsmap_dict <« dictionary(file = "english.yml",
format = "YAML")

keys (e.g. Africa) are translated into values (e.g. addis ababa)

print(newsmap_dict)

#H# Dictionary object with 5 primary key entries and 3 nested levels.
## - [AFRICA]:

HH - [EAST]:

HH - [BI]:

H - burundi, burundian*, bujumbura
tHH - [DJ]:

H - djibouti, djiboutianx

HH - [ER]:

Ht - eritrea, eritreanx, asmara

HH - [ET]:

H - ethiopia, ethiopianx, addis ababa
HH - [KE]:

e - kenya, kenyanx, nairobi Theresa Gessler, Descriptive Text Analysis
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Applying and creating dictionaries

Applying the dictionary - dfm
dfm_lookup(debate_dfm,newsmap_dict)[650:655,111:113]

## Document-feature matrix of: 6 documents, 3 features (94.44% sparse) and 2 docvars.

Ht features

## docs AMERICA.NORTH.GL AMERICA.NORTH.PM AMERICA.NORTH.US
Ht 650 Biden 0 0 0
it 651_Trump 0 0 0
H 652 Wallace 0 0 0
it 653_Trump 0 0 0
H 654 Wallace 0 0 0
Ht 655 Biden 0 0 1

— lookup command looks up dictionary values and converts them to keys

— results match our concepts, not the values
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Applying and creating dictionaries

Applying the dictionary - Tokens

tokens_lookup(debate_toks,newsmap_dict)[650:655]

Tokens consisting of 6 documents and 2 docvars.
650 Biden :
character(0)

651 _Trump :
character(0)

652 Wallace :
character(0)

653_Trump :
character(0)

654 Wallace :
character(0)

655 Biden :
[1] "AMERICA.NORTH.US"

THEFFEHEEEREEEREERERE®

Theresa Gessler, Descriptive Text Analysis
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Applying and creating dictionaries

Getting aggregate statistics

We can obtain frequencies with textstat_frequency()

dfm_lookup(debate_dfm,newsmap_dict) %>% textstat_ frequency()

H feature frequency rank docfreq group
H1 AMERICA.NORTH.US L 1 35 all
H 2 ASTIA.EAST.CN 10 2 9 all
H 3 EUROPE.EAST.RU 6 3 6 all
H 4 EUROPE.WEST.FR 5 4 4 all
H 5 ASTIA.SOUTH.IN 2 5 2 all
#H 6 AMERICA.CENTER.MX 1 6 1 all
H 7 AMERICA.SOUTH.BR 1 6 1 all
#H 8 ASTIA.EAST.JP 1 6 1 all
#H 9 ASTA.WEST. IQ 1 6 1 all
#H 10 EUROPE.EAST.UA 1 6 1 all
11 EUROPE.NORTH.IE 1 6 1 all
H 12 EUROPE.WEST.DE 1 6 1 all

— How often are countries mentioned?
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Applying and creating dictionaries

In R

03_dictionaries.rmd, line 69 ff.

e load the newsmap dictionary

e apply the newsmap dictionary to the dfm

e apply the newsmap dictionary to the tokens and then create a dfm

e compare the output of textstat_frequency() for both objects: Why is there a

difference?
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Applying and creating dictionaries

Dictionaries for dfms and tokens

newsmap_dict <« dictionary(file = "english.yml",
format = "YAML")
debate_dfm %>% dfm_lookup(newsmap_dict) %>% textstat frequency() %>% head(4)

H feature frequency rank docfreq group
#H 1 AMERICA.NORTH.US 44 1 35 all
H 2 ASTIA.EAST.CN 10 2 9 all
H 3 EUROPE.EAST.RU 6 3 6 all
Ht 4 EUROPE.WEST.FR 5 4 4 all

debate_toks %>% tokens_lookup(newsmap_dict) %>% dfm() %>% textstat_ frequency() %>%

head(4)

H feature frequency rank docfreq group
#Ht 1 america.north.us 58 1 40  all
H 2 asla.east.cn 10 2 9 all
H 3 europe.east.ru 6 3 6 all
H 4 europe.west.fr 5 4 4 all
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Applying and creating dictionaries

— Some of the dictionary keys contain multi-word expressions which depend on word
order - e.g. the entry for America

newsmap_dict$AMERICA$NORTH$US

[1] "united states" "us" "americanx" "washington"

HH
## [5] "new york"

Multi-word entries remain intact in the tokens but are cut apart in the dfm

tokens_select(debate_toks,newsmap_dict)[12]

# Tokens consisting of 1 document and 2 docvars.
# 12 Biden :
## [1] "American" "United" "States" "United" "States" "American"

debate_toks[12] %>% dfm() %>% dfm_select(newsmap_dict)

## Document-feature matrix of: 1 document, 1 feature (0.00% sparse) and 2 docvars.
H features

#H docs american
# 12 _Biden 2 Theresa Gessler, Descriptive Text Analysis 38 / 61



Working with dictionary results

Potential questions

e How often are specific concepts mentioned?
e Are specific concepts mentioned?
e How do these mentions develop, dependent ony (e.g. time, speaker, ...)

— We need to work with the results!

— One way to do so is to weigh the results

geography _dfm ¢ debate_toks %>%
tokens_lookup(newsmap_dict) %>%
dfm()
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Working with dictionary results

Weighting

o the frequency of a concept geography_dfm %>% textstat_frequency() %>% head(2)
— continuous per text

H feature frequency rank docfreq group
# 1 america.north.us 58 1 40 all
H 2 asla.east.cn 10 2 9 all

e the presence of a Concept geography dfm %>% dfm_weight("boolean") %>%
(0 / 1 per text) textstat_frequency() %>% head(2)

HH feature frequency rank docfreqg group
## 1 america.north.us 40 1 40 all
H 2 asla.east.cn 9 2 9 all

Theresa Gessler, Descriptive Text Analysis 40 / 61



Working with dictionary results

Weighting

* a proportion tokens_lookup(debate_toks, newsmap_dict,nomatch =
e USEe prop “weighting "NN") %>%
dfm() %>% dfm_group(speaker) %>%
dfm_weight("prop") %>%
textstat_frequency(group=speaker) %>% head()

before the lookup command
or specify anomatch
argument so the dictionary
so the proportions relate to ## feature frequency rank docfreq group

all WordS’ not the H 1 nn 0.9945750452 1 1 Biden
dictionary features # 2 america.north.us 0.0042624645 2 1 B?den
#H 3 europe.west.fr 0.0003874968 3 1 Biden
H 4 asla.east.cn 0.0002583312 4 1 Biden
# 5 america.center.mx 0.0001291656 5 1 Biden
#H 6 america.south.br 0.0001291656 5 1 Biden
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Working with dictionary results

Interpreting dictionaries

When you're done with reshaping the results, most people find it easier to work with data
frames

— YOU Can use convert("data.frame") to convert the dfm into a data frame — Use in
statistical analysis

dfm_lookup(debate_dfm,newsmap_dict) %>%
convert("data.frame") %>%

head()

HH doc_1d AFRICA.EAST.BI AFRICA.EAST.DJ AFRICA.EAST.ER AFRICA.EAST.ET

#H 1 1 _Wallace 0 0 0 0

#H 2 2 _Wallace 0 0 0 0

H 3 3 _Biden 0 0 0 0

H 4 4_Trump 0 0 0 0

Ht 5 5 Biden 0 0 0 0

#H 6 6_Wallace 0 0 0 0

HH AFRICA.EAST.KE AFRICA.EAST.KM AFRICA.EAST.MG AFRICA.EAST.MU AFRICA.EAST.Mw
Ht 0 0 0 0 0
it 0 0 Theresa Ges%)ler, Descriptive Text@nalysis 0 42 | 61



Dictionaries: creation & evaluation
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Dictionaries: creation & evaluation

Which words signal that concept is being used?

Loughran, T. and McDonald, B. (2011), When Is a Liability Not a Liability? Textual Analysis,
Dictionaries, and 10-Ks. The Journal of Finance, 66: 35-65. doi:101111/j.1540-6261.2010.01625.X

e "In a large sample of 10-Ks during 1994 to 2008, almost three-fourths of the words
identified as negative by the widely used Harvard Dictionary are words typically not
considered negative in financial contexts.

e examples

o costs, tax, expense, board, foreign, vice, decrease, risks, ...

Theresa Gessler, Descriptive Text Analysis 4t | 61



Dictionaries: creation & evaluation

0.00%

Source: Loughran, T. and McDonald, B.
(2011), When Is a Liability Not a Liability?
Textual Analysis, Dictionaries, and 10-Ks.
The Journal of Finance, 66: 35-65.
doi:10.1111/j1540-6261.2010.01625.X
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Dictionaries: creation & evaluation

Creating a dictionary

For creating your own dictionary:

e remember creating dictionaries is difficult & humans are bad at it

e try to come up with as many possible ways to address your concept as possible
o use your imagination, ask others, use synonym lexicons...

e test whether the words are really used in connection to the concept
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Dictionaries: creation & evaluation

Creating a dictionary with quanteda

e if you need to create a dictionary from scratch or edit an existing dictionary, you can
define dictionaries as lists of words

simple_dict ¢« dictionary(list(liberalism = c('xtaxx', 'xreductionx', 'bureaucratx',
‘competx', ‘'deregx',
'efficix', 'jobx', 'tax')))

print(simple_dict)
#H Dictionary object with 1 key entry.
## - [liberalism]:

H - *xtaxx, xreductionx, bureaucratx, competx, dereg%, efficix, jobx, tax

more options, such as reading in files, are described in the quanteda documentation - if you
actually want to do this for your thesis, | recommend working with an excel file or similar
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Dictionaries: creation & evaluation

Form: glob patterns and regular expressions

e often you want dictionaries to be more universal - for example, to capture words
regardless of endings or with different spellings
o e.g. student, students

« glob patterns: wildcard characters, see wikipedia)
o example: Pauwels (2011): christ* — captures: Christian, Christ, Christianty etc.
o * matches any string of characters
o ? matches exactly one character
o [ ] matches one character given in the bracket, e.g [AB] -> matches A or B — e.g.
"rlau]n" for run and ran
e more complex, but also more powerful: regular expressions / regex
o regex cheat sheet, another regex cheat sheet
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Dictionaries: creation & evaluation

Evaluation

e evaluation of dictionaries is crucial to validate the measures
o In which context are words used?
o do | find all the texts that are relevant?

— formal procedures for supervised learning

— more informal procedures to get an impression of the text
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Dictionaries: creation & evaluation

Evaluation

o Use "extreme" texts:
o e.g. how left and right politicians speaking about an issue
o 5-stars and 1-star ratings of a product
o policy uncertainty in times of crisis and in times of boom

— see If the measure behaves as you would expect it to
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Dictionaries: creation & evaluation

Evaluation

« Identify frequent matches and explore their context
o use tokens_select() to find frequent matches
o explore context e.g. with the kwic() -function()

debate_toks %>%
tokens_select(newsmap_dict) %>%
dfm() %>%

topfeatures(8)
#H american us united states china americans paris new
HH 19 19 10 10 10 6 5 4

— dfm_select() and tokens_select() do not convert values into dictionary keys, they just
discard everything else
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Dictionaries: creation & evaluation

Homework: Applying and creating dictionaries

Complete 03_dictionaries.rmd

evaluating dictionary results by group

applying specific levels of a dictionary

use weighting with dictionaries

create your own dictionary to measure a different topic

use the dictionary to classify texts into topics by finding a decision rule
transfer to EUI theses
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Tomorrow

Theresa Gessler, Descriptive Text Analysis 53/ 61



Tomorrow

What we'll cover

 Supervised Classification
o using labelled data to learn about new data
o from pre-processed data to results
evaluation techniques
o also relevant for dictionaries

classification accuracy as substantive information

o using predicted labels to infer quantities of interest

o example: measuring polarization / measuring gender differences
maybe: other statistical methods

o wordscores, wordfish

packages: quanteda, quanteda.textmodels, caret
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Tomorrow

What we'll cover

e Unsupervised Classification
o topic models
o cluster analysis
o using the structural topic model
e elements of weak supervision
o supervised topic models
o latent semantic scaling
e maybe: other statistical methods
o wordscores, wordfish
e packages: stm, (...)
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Tomorrow

Preparation

o complete:

01_rmarkdown.rmd

01_textanalysis.rmd

02_transform_preproc.rmd — pre-processing techniques
02_descriptive_analysis.rmd

02_dictionaries.rmd

 if you want, do the additional exercises with your own data

(0]

(0]

o

o

(0]
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Tomorrow

Preparation

Building on the course

e think of your data and your concept
o Is there any labelled data you could use?
= e.g. pre-coded data
o what would you want to find in unlabelled data?
« could you use classification to study differences between (binary) groups
o e.g. parties, partisans, genders, ...
e is there a text corpus that you found interesting but you have very limited knowledge
of?
o e.g. a data archive
e is there a corpus of highly similar texts where you are interested in framing?
o e.g. open survey questions
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Tomorrow

Literature

Pre-processing

e Denny, Matthew J., und Arthur Spirling. ,Text Preprocessing For Unsupervised Learning:
Why It Matters, When It Misleads, And What To Do About It Political Analysis 26, Nr. 2
(April 2018): 168-89. https://doi.org/10.1017/pan.2017 44.

Dictionaries

o Muddiman, Ashley, Shannon C. McGregor, and Natalie Jomini Stroud. “(Re)Claiming Our
Expertise: Parsing Large Text Corpora With Manually Validated and Organic Dictionaries.”
Political Communication 0, no. 0 (November 7, 2018): 1-13.
https://doi.org/101080/10584609.20181517843.

e Loughran, Tim, and Bill Mcdonald. “When Is a Liability Not a Liability? Textual Analysis,
Dictionaries, and 10-Ks.” The Journal of Finance 66, no. 1 (2011); 35-65.
https://doi.org/101111/j.1540-6261.2010.01625.X.
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Tomorrow

Literature

Classification

e Barbera, Pablo, Amber E. Boydstun, Suzanna Linn, Ryan McMahon, and Jonathan Nagler.
“Automated Text Classification of News Articles: A Practical Guide.” Political Analysis,
undefined/ed, 1-24. https://doi.org/101017/pan.2020.8.

e Peterson, Andrew, and Arthur Spirling. “Classification Accuracy as a Substantive Quantity
of Interest: Measuring Polarization in Westminster Systems.” Political Analysis 26, no. 1
(January 2018): 120-28. https://doi.org/101017/pan.2017.39.

e Beltran, Javier, Aina Gallego, Alba Huidobro, Enrique Romero, and Lluis Padro. “Male and
Female Politicians on Twitter: A Machine Learning Approach.” European Journal of
Political Research n/a, no. n/a. Accessed March 24, 2020. https://doi.org/10.1111/1475-
6/65.12392.

e Cranmer, Skyler J. “Introduction to the Virtual Issue: Machine Learning in Political
Science,” n.d., 9.
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Tomorrow

Literature

Topic models

DiMaggio, Paul, Manish Nag, and David Blei. “Exploiting Affinities between Topic
Modeling and the Sociological Perspective on Culture: Application to Newspaper
Coverage of U.S. Government Arts Funding.” Poetics, Topic Models and the Cultural
Sciences, 41, no. 6 (December 2013): 570-606. https://doi.org/10.1016/j.poetic.2013.08.004.
Roberts, Margaret E., Brandon M. Stewart, and Dustin Tingley. “Stm: R Package for
Structural Topic Models.” Journal of Statistical Software, 2013.

Bauer, Paul C., Pablo Barbera, Kathrin Ackermann, and Aaron Venetz. “Is the Left-Right
Scale a Valid Measure of Ideology?” Political Behavior 39, no. 3 (2017): 553-83.

Egami, Naoki, Christian J Fong, Justin Grimmer, Margaret E Roberts, and Brandon M
Stewart. “How to Make Causal Inferences Using Texts*,” n.d., 68.

Roberts, Margaret E., Brandon M. Stewart, Dustin Tingley, Christopher Lucas, Jetson
Leder-Luis, Shana Kushner Gadarian, Bethany Albertson, and David G. Rand. “Structural
Topic Models for Open-Ended Survey Responses.” American Journal of Political Science

58, no. 4 (October 1, 2014): 1064-82. https://doi.org/101111/ajps12103.
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Thank you! - Questions?
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